Wednesday, February 3, 2016

Nutrient deprivation kills Kidney Cancer cells

Duke University researchers have discovered a promising target for renal cell carcinomas. A study appearing online Feb. 1, 2016 in Cancer Research shows that the majority of these cancers rewire their metabolism in a way that leaves them addicted to an outside nutrient called cystine.
By depriving the cancer cells of the amino acid cystine, the researchers were able to trigger a form of cell death called necrosis in mouse models of the disease.
"We found that the same machinery that makes these tumors so aggressive also makes them vulnerable to nutrient deprivation," said senior study author Jen-Tsan Ashley Chi, Ph.D., associate professor of molecular biology and microbiology at Duke University School of Medicine. "It is like we are beating it at its own game."
Tang subjected the cancer cells to a nutrient deprivation test, removing each of the 15 amino acids from their growth media, one by one. Most of the time, the cells weathered the change quite well, slowing down their growth but otherwise remaining healthy. But Tang found that when cystine was removed, the cells swelled up and floated to the surface, a sure sign of necrotic death.
Cystine is responsible for maintaining high levels of antioxidants that disarm free radicals of oxygen; so when the researchers got rid of this nutrient, the cancer cells essentially died by their own hand of free radical damage.
Such particles could be used as vaccines that are delivered through food or drink. The idea is that you would drink the vaccine, and after passing through the stomach the virus-like particles would get absorbed in the intestine and deliver vaccines to the body.
But the particles could also be used to attack cancer. Stark and Cheng did some tinkering with the proteins, so that they carry sticky cysteine amino acids on the outside. They could then chemically link other molecules to these cysteine groups.
They worked with a molecule called LXY-30, developed by researchers at the UC Davis Comprehensive Cancer Center, which is known to stick to cells.


Read more at: http://phys.org/news/2016-02-hepatitis-virus-like-particles-potential-cancer.html#jCp

No comments:

Post a Comment