Wednesday, December 2, 2015

Scientists create a multifunctional endoscope to detect Cancer

A scientific team from the Center for Nanoparticle Research within the Institute for Basic Science (IBS) has developed a multifunctional endoscope that integrates transparent bioelectronics such as lasers with theranostic nanoparticles (NPs), therapy to test new medication and tailor a unique treatment plan for a patient. Conventional endoscopes lack the spatial resolution necessary to detect and treat small cancers and other abnormalities.
The team, led by the director of the Centre for Nanopaticle Research Professor Taeghwan Hyeon, demonstrated a multifunctional surgical endoscope system to diagnose and treat intestinal diseases, such as colon cancers. This 'smart' endoscope system contains transparent bioelectronics, which provides pH-based sensing combined with radio frequency ablation (RFA); a medical procedure in which part of the electrical conduction of a tumor is ablated using heat generated from a medium frequency alternating current.
The system's additional sensors for monitoring mechanical contacts and mapping temperatures provide accurate physiological sensing capabilities during cancer detection and ablation. The transparency enables optimal integration of a number of multifunctional sensing and therapeutic components on the endoscope tip without blocking the line of sight of the camera or light. By loading transparent bioelectronics on the camera of the endoscope, the tissue observed through the camera in fluorescence mapping and phototherapies can be exactly matched with the characterized ablated tissues by transparent devices. The system also has custom-designed biocompatible NPs with phototherapeutic and chemotherapeutic agents, which can be delivered locally and activated with light. According to the team's paper, this multifunctional endoscopic system could be useful for the detection of flat or depressed abnormal growths.

No comments:

Post a Comment